方麵
階段
一個係列 |活著總了
13美元最後提出了
13美元 1年前缺失:方麵的產品演示和案例研究
向技術買家推銷你的產品。
接觸1000個買家,他們使用CB Insights來識別供應188bet游戏商,演示產品,並做出購買決定。
含有Facet的esp
ESP矩陣利用數據和分析師的洞察力來識別特定技術領域的領先公司並對其進行排名。
這個市場上的供應商使用生成式AI進行各種後期處理、編輯和圖像增強任務。這些功能包括提高老照片和低分辨率照片的質量,刪除和更改背景,以及重新繪製(即刪除圖像中的物體並自動填充空間)。
缺失:方麵的產品和差異化
不要讓你的產品被跳過。買家使用我們的供應商排名來篩選公司,並推動提案請求(rfp)。
包含Facet的專家集合
專家收藏是由分析師策劃的列表,突出了你在最重要的技術領域需要了解的公司。
Facet包含在3專家收藏,包括數字內容與合成媒體.
數字內容與合成媒體
488件
合成媒體集合包括使用人工智能生成、編輯或啟用各種形式的數字內容的公司,包括圖像、視頻、音頻和文本等。
人工智能
9699件
這包括銷售AI SaaS、使用AI算法開發核心產品的初創公司,以及開發支持AI工作負載的硬件的初創公司。
數字醫療
8838件
初創公司正在重塑醫療保健的交付方式
方麵專利
Facet已經申請了10項專利。
最受歡迎的3個專利主題包括:
- 分布式計算架構
- 矯形外科手術
- 骨骼係統
申請日 |
授予日期 |
標題 |
相關的話題 |
狀態 |
---|---|---|---|---|
3/3/2020 |
10/18/2022 |
脊柱骨骼,關節,骨骼係統,骨折,整形外科手術 |
格蘭特 |
申請日 |
3/3/2020 |
---|---|
授予日期 |
10/18/2022 |
標題 |
|
相關的話題 |
脊柱骨骼,關節,骨骼係統,骨折,整形外科手術 |
狀態 |
格蘭特 |
最新的方麵新聞
2021年11月17日
Facet是一款基於API和基於瀏覽器的內容感知人工智能(AI)照片編輯器,在a輪融資中籌集了1300萬美元,用於繼續構建有機會徹底改變照片編輯領域的工具。Facet的首席執行官兼聯合創始人喬·雷辛格解釋說:“為了在日益激烈的競爭中脫穎而出,如今的品牌承受著巨大的壓力,必須每天製作高質量、多樣化的內容。”“但現代圖像編輯仍停留在Photoshop的模式中:笨重的打印時代的軟件工具,從未適應當今快節奏、自動化的營銷工作流程或對變化、一致性和高功能遠程協作的需求。”為了解決這個問題,Facet正在構建它認為創意專業人士需要的工具,包括一個內容感知的圖像編輯平台。Facet以一種可以使用api訪問的方式構建了其編輯工具,這意味著編輯器可以執行極其強大的批處理命令,就像Snapchat照片過濾器、Adobe Lightroom批處理編輯和Photoshop的靈活性之間的混搭一樣。TechCrunch的攝影師哈吉·簡·坎普斯(Haje Jan Kamps)寫了大約20本以攝影為主題的書籍,他花了一些時間來研究Facet在做什麼,在他親眼看到這個工具之前,他不太確定該公司在做什麼,也不太確定它是為誰服務的。這並不特別令人驚訝,因為Facet正在構建的東西很難用語言表達。然而,在他親身體驗之後,他意識到,在他能夠跨越公司具有挑戰性的學習曲線之後,他能夠快速地在這個平台上進行編輯,這對他來說在Photoshop中是很難或完全不可能的。Facet表示,它專注於編輯內容,而不是像素。該公司希望通過使用人工智能自動分層來加速圖像編輯工作流程。 Facet says its system understands how to mask everything from clothing, hair, and skin tones to textures and quarter-tone luminance ranges, which it says frees up its user to focus on big picture concepts, instead of pixel-level edits. Kamps says that Facet’s technology is designed to make commercial-grade editing easier and more automated by allowing users to create custom filters and commands that can apply to a host of possible uses. For example, Kamps made a filter that automatically isolates a subject and then blurs and desaturates the background instantly. The results are mixed, but when it works well, it works really well. “As you edit an image and layer on those changes, we analyze every edit and we figure out how to transfer that across a much larger content library, building you your presets automatically. This is very powerful for maintaining brand consistency across a campaign for making sure that all your product, photographs, are consistent,” Reisinger tells Kamps. Facet is able to handle photos and projects at a massive scale which is great for eCommerce or media sites, but not particularly useful for individual photographers. Reisinger says that Facet is working on a consumer-grade platform that hobbists could use, but the real power of what it is creating really only shines when used by creative software developers who know how to leverage the company’s APIs. “One aspect I really like about Facet is that it enables asynchronous collaboration. You can define the style of a photo, and designers can use the same style on lots of different photos without having to manually edit each of the photos. You can encode the look and feel of a photo programmatically, and copy them across from one image to another,” Dan Abelon, partner at Two Sigma Ventures which was one of the lead investors of Facet’s Series A round of funding. “You start to get into the more community side — if you like someone’s style, you can apply it to your own images, which opens up a whole world of real-time collaboration.” Facet is still very early on in its journey, but the large investment of it received will go a long way to expanding its team and figuring out a clearer go-to-market strategy. “This is really just the beginning for us,” Reisinger says. “We’re blending state-of-the-art deep learning, rendering, and VFX, to remake photo and video editing in human, rather than machine, terms. Very soon, working with Facet will be as easy and fluid as having a conversation.” Facet is currently allowing free trials of its platform as well as plans that start at $24 per month for professional users and $50 per month for users who want access to its APIs.
方麵常見問題
Facet的總部在哪裏?
Facet的總部位於舊金山南方公園112號。
Facet的最新一輪融資是什麼?
Facet的最新一輪融資是A輪。
Facet籌集了多少資金?
Facet總共籌集了1300萬美元。
Facet的投資人是誰?
Facet的投資者包括Basis Set Ventures、Accel、Slow Ventures、Two Sigma Ventures和South Park Commons。
Facet的競爭對手是誰?
Facet的競爭對手包括Imagen, Runway, PhotoRoom, Vue。ai, Bria, NeuroPixel。人工智能,玫瑰花蕾的人工智能,數據Grid, Let's Enhance, Dresma and 21 more.
將Facet與競爭對手進行比較
Let’s Enhance是一個針對視覺內容的機器學習解決方案。它提供了神經網絡來自動去除jpeg中的噪聲,升級4倍,並添加缺失的細節,使圖像看起來自然。
Topaz Labs為專業照片編輯開發插件和獨立軟件。每個Topaz Labs插件都是為特定目的而設計和優化的。所有都提供先進的功能,並提供自然的結果。Topaz Labs插件是為專業攝影師構建的,高質量的圖像是他們的首要任務。
Vue.aiis a computer vision and artificial intelligence company that provides a one-stop AI and image recognition platform for apparel retailers. It offers intelligent retail automation with its catalog data management and omnichannel personalization products. The company was founded in 2016 and is based in Redwood City, California.
Rosebud AI通過人工智能創造了栩栩如生的數字時尚和服裝模型。它可以讓品牌通過與用戶人口統計信息相匹配的模型來高度定位他們的營銷和電子商務展示。
Dresma提供了一個數字平台,專門提供人工智能驅動的電子商務圖像,旨在為企業實現即時規模和超個性化。
NeuroPixel。人工智能is a DeepTech startup at the intersection of fashion eCommerce and computer vision. It generates synthetic human models with the ability to personalize basis size, gender, and age, as well as automate the process of cataloging apparel. NeuroPixel.AI was founded in 2020 and is based in Karnataka, India.
為您的團隊發現正確的解決方案
CB I188bet游戏nsights技術市場情報平台分析供應商、產品、合作夥伴和專利的數百萬個數據點,幫助您的團隊找到他們的下一個技術解決方案。