搜索公司,投資者……
伊利諾伊大學-厄公司標誌

伊利諾伊大學-香檳分校

illinois.edu

成立一年

1867年

階段

格蘭特-二世 |活著

總了

300美元

伊利諾伊大學-香檳分校

伊利諾伊大學是一個提供者的研究、教學和公眾參與,廣泛的學術,國際知名教師。大學服務於國家,國家,和世界通過創造知識,培養學生對生活的影響,和解決關鍵的社會需要通過知識的轉移和應用。

總部的位置

東約翰街601號

香檳市伊利諾斯州61820 - 5711,

美國

缺失:伊利諾伊大學-香檳分校產品演示和案例研究

促進你的產品提供技術買家。

達到1000年代的買家使用CB的見解來確定供應商,演示產品,188bet游戏做出購買決定。

缺失:伊利諾伊大學-香檳分校產品&微分器

不要讓你的產品被跳過。買家使用我們的供應商排名名單公司和驅動(rfp)請求建議。

研究包含伊利諾伊大學厄

獲得CB的數據驅動的專家分析見解信息部。188bet游戏

188bet游戏CB見解情報分析家提到伊利諾伊大學-厄1 188bet游戏CB見解研究短暫,最近在2020年5月14日

專家集合包含伊利諾伊大學厄

專家集合是analyst-curated列表,突出了公司你需要知道的最重要的技術空間。

伊利諾伊大學-厄是包含在2專家集合,包括健康監測與診斷

H

健康監測與診斷

146件

分享服務公司提供健康監測與診斷解決方案(使用本機組件的智能手機,如攝像機、麥克風、加速度計、陀螺儀,等等)。公司標記# SmartphoneBasedDiagnostics

H

它的健康

980件

伊利諾伊大學-香檳分校專利

伊利諾伊大學-香檳分校提交了36項專利。

3最受歡迎的專利主題包括:

  • 電子設計自動化
  • 嵌入式係統
  • 微控製器
專利圖

申請日

授予日期

標題

相關的話題

狀態

10/27/2020

4/12/2022

微控製器、無線傳感器網絡、嵌入式係統、電子設計自動化、時鍾信號

格蘭特

申請日

10/27/2020

授予日期

4/12/2022

標題

相關的話題

微控製器、無線傳感器網絡、嵌入式係統、電子設計自動化、時鍾信號

狀態

格蘭特

最新的伊利諾伊大學-香檳分校新聞

測量聚合物納米纖維的粘附和摩擦

2020年9月1日

聚合物納米纖維,小於一百人的頭發的大小,安裝在MEMS機械測試裝置。插圖顯示了兩個設備定位垂直地粘附和摩擦力量可以同時測量相交點的接觸。信貸:伊利諾伊大學香檳分校使用設備,小到可以裝在一根大頭針的針頭,伊利諾伊大學香檳分校的研究人員獲得了新知識在nanoscale-knowledge聚合物纖維的性質,可以告訴產品的設計和製造的隨機網絡絲,如強大的過濾器旨在阻止外國粒子進入我們的肺。“網絡的互聯細絲到處都是在生物學和生物工程係統中,如結締組織,蜘蛛網,和組織生長的支架,以及消費產品,如空氣過濾器,“說Debashish Das,博士後學者在航空航天工程係U的我。“這項研究提供了直接的實驗洞察粘附和摩擦的方式耦合納米長度尺度。納米纖維的材料相互強烈堅持使分離困難。即使他們強行分開,他們自發地粘在一起。獲得實驗洞察這些現象可以直接影響強烈的設計,彈性,艱難的軟納米纖維網絡。”Das explained as we examine fibers and other surfaces at micro and nanoscales, the landscape changes. "As we go smaller and smaller from the macro length scale, which are visible to unaided eye, to the micro and nanometer length scales, the surface area of particles and fibers decreases slower compared to the volume and everything becomes stickier." In a network of crisscrossing nanofibers with millions of junctions, Das conducted experiments to find out what happens at one of the overlapping junctions and to measure the force required to pull or slide two fibers apart. The diameter of just one of his nanofibers is more than one hundred times smaller than a human hair. "To understand what happens in the network at the macro scale, which is potentially comprised of billions of nanofibers, first we need to understand the mechanical phenomena at the junction where two nanofibers cross," he said. Experimenting with nanoscale fibers requires specialized micro-sized devices. Das designed and fabricated tiny machines—Micro-Electro-Mechanical Systems, or MEMS—that are smaller than one millimeter in size. "In a previous study, we used a MEMS device to stretch a single collagen fiber," he said. "In this study, we coupled two MEMS devices oriented orthogonally to push two fibers together and then separated them by sliding. While doing so we were able to simultaneously measure the force due to adhesion and due to friction. This was the first time such complete measurements were made possible for nanoscale fibers. "From our experimental measurements, we calculated the size of the contact area that is formed between the two nanofiber surfaces at their junction. As we applied a sliding force, the contact started peeling until the sliding force suddenly dropped and an instability occurred, which shows how strong adhesive properties can be at the nanoscale." Das said, "A key finding from our experiments was that the critical sliding force divided by the contact area was equal to the shear yield stress of the polymer . As we pull or stretch a polymer, at a particular stress, it will start deforming plastically and won't go back to its initial configuration. The stress at which the plastic deformation sets in is known as the yield stress of the polymer." According to Das, this is the first study to identify what is happening during the sliding of polymer nanofibers. "We tested fibers with different diameters. Each time, we found that the sliding instability occurred at a particular value of the shear stress—the tangential force divided by the contact size—that is equal to the shear strength of the polymer. This was something we didn't know before, although such a response had been reported before for metals." The study, "Sliding of adhesive nanoscale polymer contacts," was written by Debashish Das and Ioannis Chasiotis. It is published in the Journal of the Mechanics and Physics. Explore further

伊利諾伊大學-香檳分校常見問題(FAQ)

  • 伊利諾伊大學-香檳分校是何時成立的?

    伊利諾伊大學-香檳分校成立於1867年。

  • 伊利諾伊大學-香檳分校的總部在哪裏?

    伊利諾伊大學-香檳分校的總部坐落在東約翰街601號,香檳。

  • 伊利諾伊大學-香檳分校的最新一輪融資嗎?

    伊利諾伊大學-香檳分校的最新一輪融資是格蘭特- II。

  • 伊利諾伊大學-厄籌集了多少錢?

    伊利諾伊大學-香檳分校共有300美元。

  • 誰是投資者的伊利諾伊大學厄?

    投資者的伊利諾伊大學厄包括美國環境保護署。

發現正確的解決方案為您的團隊

CB見解188bet游戏科技市場情報平台分析數百萬數據點在供應商、產品、合作關係,專利來幫助您的團隊發現他們的下一個技術解決方案。

請求一個演示

CBI的網站通常使用一些餅幹,使更好的相互作用我們的網站和服務。使用這些餅幹,這可能是存儲在你的設備上,允許我們的改進和定製你的經曆。你可以閱讀更多關於你的餅幹的選擇在我們的隱私政策在這裏。繼續使用這個你同意這些選擇。

Baidu
map